Wine Grape Production Cutting Costs, Nutrients and Quality

"Less can mean More"

- Irrigation
- Nitrogen
- Crop
- Growth

Factors to Consider

- Variety/Rootstock
- Water Source

• Production

• System

- Past Inputs
- Soil Type

- Cover Crop
- Other "Cuts"

Vine Nutrition

• Less nitrogen, especially with drip irrigation

• Moderate to Low Potassium

• Soil applied micro-nutrients versus foliar

Quality Demands

Vine Balance Fruit : Vegetative Growth

Production

- Nitrogen 2.9 lb per ton
- Potassium 4.9 lb
- Phosphorus 0.56 lb
- Calcium 1.0 lb
- Magnesium 0.20 lb

Vineyard Design

Establishment Decisions affecting Management

- Spacing
- Rootstock
- Trellis System
- Variety (Clone)

Vineyard Management

Crop Load Pruning Variety Vigor Use and Style (Intensity/Complexity) Vegetative Growth Irrigation Available water and ET demand Vine Nutrition Vine needs vs. Availability

Canopy Management

- Pruning Level
- Leaf Removal
- Shoot Thinning
- Cluster Thinning

Crop Level Costs

- In addition to pruning setting the potential:
- Shoot Thinning
- Leaf Removal
- Cluster thinning, cost increase for significant quality increase
- Timing is very important in all cases

Deficit Irrigation Regulated Deficit Irrigation

What is it?

The controlled application of supplemental water below full use levels for seasonal total, i.e., a percentage of full seasonal evapo-transpirational use (100% Et_c).

Irrigation

Deficit Irrigation at 70% Vine ET

Full Water use25 acre inches per year70% ET17.5 acre inches

Probably the most important consideration of all Early deficits important (budbreak through bloom) Variety, wine style and nerve affect deficit levels

Why Use Deficits ?

• To control excessive (and unnecessary) vegetative growth while maintaining economic crop production, maximing quality and minimizing disease or pest problems

• To maintain a vine balanced in growth and production with maximum quality

When ?					
Early	Stage I	bud break to flower set			
Mid		flower set to 30 days post			
	Stage II	30-40 days post bloom			
Late	Stage III	veraison to harvest			
Postharvest		no stress			

How ?

- Minimize early season applied water
- Monitor soil and/or vine water status (stress)
- Irrigate on a schedule based on a percent of vine ET_c for the season
- Induce a moderate stress prior to veraison
- Use caution during hot spells

Interactions with Water

- Past Inputs
 - Organic vs Synthetic
 - Amount
 - Previous crops
- Soil Type
 - Texture
 - Depth
 - Clay type
- Drip vs Furrow
- Cover Crop
- Other Cuts (Robbing Peter to Pay Paul)

Water Source

- Surface Water
- Well Waters NO3-N

pH

1ppm NO3-N = 2.2 *lbs N per 12 inches of water pH can affect nutrient availability and formulation choice to be applied*

Nitrogen

- Positives
 - + Growth
 - + Productivity
 - + Fruit development
- Negatives
 - Excess vigor
 - Fruit maturity
 - Rot, , juice pH, color

Potassium

- Positives
 - + Water Relations
 - + Productivity
 - + Acid balance
 - + Ripening
- Negatives
 - pH
 - Total acids
 - Rot, , juice pH, color

Micro-Nutrients

- Zinc (Zn)
 - Sandy soils; historical problem
 - Manure use; negative effect
- Boron (B)
 - Becoming more common, especially sandy soils
 - Optimum range very narrow (0.5 to 1.5ppm)
- Cu, Mn, Fe, Mo
 - Questionable response

Balance of Nutrient Inputs

- N is enhanced by adequate Phosphorus (P) and Potassium (K)
- Magnesium (Mg) competitive
- Sulfur (S)
- Chlorides (Cl) not all bad, but caution needed
 - Consider past crops
 - Review past inputs
 - Petiole tissue samples
 - Source of irrigation water (NO3-N)

Nutrient Analysis

- Soil samples versus Petioles
- Petioles vs Blades
- Number of samples
 - One to two vs monthly or weekly
- Timing
 - Bloom
 - Veraison

Timing of Application(s)

• Nitrogen

- Post Harvest
- Mid May (bloom) to Late June (Bunch Closure)
- Potassium
 - Any time, but…
 - Not July through Harvest
 - KCl early vs late
 - KSO4 safer, but more costly
 - KTS very effective, costly (availability?)
 - KMP less used or needed

Foliar vs Soil

- N-P-K less efficient; more costly per pound
- Micro-nutrients very efficient pre-bloom
- Caution on mixing any nutrients
- Recent trends of natural extracts & growth enhancers
 - Can be helpful, but...
- Urea and/or Potassium nitrate KNO3

Chelates & Sequestered

- Plants don't care about formulation
- More costly per pound
- Drip applied formulations may benefit
- Foliar sprays less important & low concentration more quickly absorbed

Liquid vs Dry Formulations

- Do your own
- Don't pay for water, but...
- May require more time and labor
- Make some test batches
- Use solutionizer or
- <u>CLEAN</u> spray rig

Pounds K2SO4 per Gallon of Water

		°F	50	68	86
•	K2SO4		0.77	0.92	1.08
•	K2O		0.42	0.50	0.58
•	K		0.35	0.41	0.48

Vegetation Management

Cover Crops Cultivation and Weeds

Pest Management

Savings for nutrients: Residual herbicides at ¹/₂ to ¹/₄ label rates

Insects/Mites Low label rates, tolerate some late buildup. Less water stress

Disease

Weed

Control

Use of sulfur and nor bunch rot sprays.

Resources

- California Agriculture Special Issue on Sustainable Viticulture
- Lodi Winegrape Commission Grower
 Assessment Work Book II
- iv.ucdavis.edu
- cesanjoaquin.ucdavis.edu
- lawr.ucdavis.edu

Summary

- Variety and Rootstock
- Water source
- Soil
- Crop Load previous year (two years)
- Tissue analysis (N less reliable)
- Cover crop competition for nutrients and water vs cultivation
- Maintain leaf area
- Reductions in other practices

Remember Those Who Serve

