Weed Management in Walnut Production

John Roncoroni Red Bluff, Ca February 15,2008

direct competition

direct competition
 physical disruption of irrigation

direct competition
 physical disruption of irrigation
 frost protection

direct competition
 physical disruption of irrigation
 frost protection
 harbor other pests

direct competition
physical disruption of irrigation
frost protection
harbor other pests
ease and quality of harvest

Annual Weeds

Grass weeds annual bluegrass barnyardgrass large crabgrass fall panicum wild barley wild oat witchgrass annual ryegrass

Broadleaf weeds cheeseweed-malva groundsel mustards horseweed pigweeds filaree lambsquarter purslane

Perennial Weeds

bermudagrass curly dock dallisgrass dandelion field bindweed Johnsongrass nutsedge

Basic Methods of Weed Control

Cultural and Mechanical

Chemical

Basic Methods of Weed Control Cultural and Mechanical Disking Flaming Mulching (synthetic or organic) Hand hoeing Covercrop + Mowing

Disking

Advantages no weed resistance non-chemical clean at harvest

Disking

Advantages no weed resistance non-chemical clean at harvest Disadvantages injury to tree dust compaction

Flaming

Advantages no resistance no residue non 'chemical'

Flaming

Advantages no resistance no residue non 'chemical' Disadvantages timing important (season and size) not as good on grass cost

Mulching

Advantages no resistance can last for years retain moisture

Mulching

Advantages no resistance can last for years Retain moisture

Disadvantage can harbor pests cost difficulties at harvest favors perennials inconsistent control

Hand Hoeing

Advantage Excellent control No weed resistance Non-chemical

Hand Tools

le

1

Hand Hoeing

Advantage Disadvantage **Excellent** control Cost No weed resistance Time Availability of Non-chemical Labor

Covercrop + Mowing

Advantages increased water penetration competition with weeds orchard access in winter may increase beneficials

Covercrop + Mowing

Advantages

increased water penetration competition with weeds orchard access in winter beneficials

Disadvantages favors low-growing and perennial weeds leaves summer annuals at harvest competition if growing near trees

Question: When is a weed not a weed?

Answer: When its resident vegetation

Basic Methods of Weed Control

Cultural and Mechanical

Chemical

Chemical Methods

total herbicide treatments

chemical mowing

strip treatment

Herbicides registered for use in Walnuts

Pre-emergence norflurazon simizine napropamide oxyflurofen flumioxazin thiazopyr

oryzalin pendimethalin trifluralin diuron rimsulfuron pronamide

Herbicides registered for use in Walnuts

Postemergence **MSMA** glufosinate <u>2,4-D</u> clethodim fluaizifop

halosulfuron glyphosate paraquat sethoxydim carfentrazone

Chemical Control

Advantages Cost (in some cases) Consistent results Ease of Application Frost Protection Easy on tree roots

Chemical Control

Advantages

- Cost (in some cases)
- Consistent results
- Ease of Application
- Frost Protection
- Easy on Vines

Disadvantages
Cost (in some cases)
Possible drift damage
Paperwork
Resistance

Herbicide Resistance

"The inherited ability of a plant to survive and reproduce following exposure to a dose of herbicide that would normally be lethal to the wild type"

from Prather, DiTomaso and Holt UCANR PUBLICATION #8012

Weeds with some Tolerance to Glyphosate

<u>Annuals</u>

- Green foxtail
- Annual morningglory
- Filaree
- Knotweed
- Stinging nettle
- Horseweed
- Cocklebur
- Puncturevine
- Clovers
- Vetch
- Bristly oxtongue
- Turkey Mullen

<u>Perennials</u>

- Curly Dock
- Bermudagrass
- Dandelion
- Cheeseweed
- Field Bindweed
- Nutsedges
 - Buckhorn plantain

Herbicide Resistance

If you have been spraying the same weeds with the same herbicide for several years and have been getting good control and then you begin to see 'escapes'-

Herbicide Resistance

If you have been spraying the same weeds with the same herbicide for several years and have been getting good control and then you begin to see 'escapes'-

You may have the beginning of resistance!

{|||

Normal sensitive population

Population still appears sensitive - High level of control

{Ⅲ

Population still appears sensitive - High level of control

A A A A A A A A

{Ⅲ

Level of control declining - first suspicion of problems

γγγγγγγγ YYYYYYYY γγγγγγγγ Y Y Y Y Y Y Y

Majority of population resistant

Annual growth habit

Annual growth habit
 High seed production

Annual growth habit
 High seed production
 Rapid turnover of seed bank (little dormancy)

Annual growth habit
 High seed production
 Rapid turnover of seed bank (little dormancy)
 Several generations per season

Annual growth habit High seed production Rapid turnover of seed bank (little) clormancy) Several generations per season Extreme susceptibility to a particular herbicide

Annual growth habit High seed production Rapid turnover of seed bank (little) (vonancy) Several generations per season Extreme susceptibility to a particular herbicide High frequency of resistant gene

DiTomaso 2000 UC Davis Weed Science School

Classification According to MOA

А	Inhibition of acetyl CoA carboxylase (ACCase)
В	Inhibition of ALS (acetolactate synthase)
C ₁	Inhibition of photosynthesis at photosystem II (Triazines)
C2	Inhibition of photosynthesis at photosystem II (Ureas)
C ₃	Inhibition of photosynthesis at photosystem II (Nitriles)
D	Photosystem-I-electron diversion
Е	Inhibition of (PPO) protoporphyrinogen oxidase
F ₁	Bleaching: Inhibition of carotenoid biosynthesis at the PDS
F ₂	Bleaching: Inhibition of 4-hydroxyphenyl-pyruvate-dioxygenase
F3	Bleaching: Inhibition of carotenoid biosynthesis (unknown target)
G	Inhibition of EPSP synthase
Н	Inhibition of glutamine synthetase
I	Inhibition of DHP (dihydropteroate) synthase
K ₁	Microtubule assembly inhibition
K ₂	Inhibition of mitosis
K ₃	Inhibition of cell division
L	Inhibition of cell wall (cellulose) synthesis
М	Uncoupling (Membrane disruption)
Ν	Inhibition of lipid synthesis - not ACCase inhibition
0	Synthetic auxins (action like indoleacetic acid)
Р	Inhibition of indoleacetic acid action
Ζ	Unknown

From Herbicide Resistance Action Committee
Herbicide resistant weeds in California

Group A

Late watergrass Barnyardgrass Early wategrass Little seed canary

Group B

Perennial ryegrass Smallflower umbrella sedge California arrowhead Redstem Ricefield bulrush Long-leaved loosestrife Russian thistle **Group O** Smooth crabgrass

Group N Wild oat Late watergrass Barnyardgrass Early wategrass

Group G Rigid ryegrass Horseweed Hairy fleabane Junglerice

Classification According to MOA

- A Inhibition of acetyl CoA carboxylase (ACCase)
- B Inhibition of ALS (acetolactate synthase)
- C₁ Inhibition of photosynthesis at photosystem II (Triazines)
- C₂ Inhibition of photosynthesis at photosystem II (Ureas)
- C₃ Inhibition of photosynthesis at photosystem II (Nitriles)
- D Photosystem-I-electron diversion
- E Inhibition of (PPO) protoporphyrinogen oxidase
- F₁ Bleaching: Inhibition of carotenoid biosynthesis at the PDS
- F₂ Bleaching: Inhibition of 4-hydroxyphenyl-pyruvate-dioxygenase
- F₃ Bleaching: Inhibition of carotenoid biosynthesis (unknown target)
- G Inhibition of EPSP synthase
- H Inhibition of glutamine synthetase
- I Inhibition of DHP (dihydropteroate) synthase
- K₁ Microtubule assembly inhibition
- K₂ Inhibition of mitosis
- K₃ Inhibition of cell division
- L Inhibition of cell wall (cellulose) synthesis
- M Uncoupling (Membrane disruption)
- N Inhibition of lipid synthesis not ACCase inhibition
- O Synthetic auxins (action like indoleacetic acid)
- P Inhibition of indoleacetic acid action
- Z Unknown

From Herbicide Resistance Action Committee

Glyphosate resistant weeds in California

<u>Rigid Ryegrass</u> (Lolium rigidum)
<u>Horseweed</u> (Conyza canadensis)
<u>Hairy Fleabane</u> (Conyza bonariensis)
<u>Junglerice</u> (Echinochloa colona)

Glyphosate resistant weeds in California

<u>Rigid Ryegrass</u> (Lolium rigidum)
<u>Horseweed</u> (Conyza canadensis)
<u>Hairy Fleabane</u> (Conyza bonariensis)
<u>Junglerice</u> (Echinochloa colona)

Glyphosate Resistant Ryegrass

Ryegrass Control http://wric.ucdavis.edu/

Herbicide	Trade Name	Control Level
ALACHLOR	LASSO	С
BROMACIL	HYVAR	С
CLETHODIM	PRISM, SELECT	С
DIURON	KARMEX	С
FLUAZIFOP	FUSILADE	С
GLYPHOSATE	ROUNDUP, TOUCHDOWN	С
HEXAZINONE	VELPAR, PRONONE	С
IMAZAMOX	RAPTOR	С
IMAZAPYR	ARSENAL, STALKER	С
METHAM	VAPAM, METAM	С
METOLACHLOR	DUAL MAGNUM	С
NAPROPAMIDE	DEVRINOL	С
NORFLURAZON	SOLICAM	С
ORYZALIN	SURFLAN	С
PENDIMETHALIN	PROWL	С
RIMSULFURON	MATRIX	С
SETHOXYDIM	POAST	С
TRIFLURALIN	TREFLAN	С

Ryegrass Control in Walnuts

Herbicide

<u>Trade Name</u>

Control Level

CLETHODIM DIURON

FLUAZIFOP GLYPHOSATE

PRI KAI	SM, SEL RMEX	ECT.	(NB)		
FUS RO	UNDUP,	(NB) TOUC	HDOW	YN	

NAPROPAMIDE NORFLURAZON ORYZALIN PENDIMETHALIN RIMSULFURON SETHOXYDIM TRIFLURALIN

DEVRINOL SOLICAM SURFLAN PROWL MATRIX POAST TREFLAN C C C C C C C C

Control of Ryegrass in Almonds 1 month after treatment

Roundup 1.5 lb Roundup + Poast .375 lb Poast .375 lb Roundup+Poast+Surflan 4 lb Poast + Surflan Roundup + Poast + Princep 2 lb Poast + Princep Roundup + Chateau 5oz Untreated LSD .05

Control of Ryegrass in Almonds 1 month after treatment

■ Roundup 1.5 lb Roundup + Poast + Chateau Gramoxone 1 lb Gramoxone + Surflan Gramoxone + Poast + Surflan Gramoxone + Princep Gramoxone + Poast + Princep Untreated LSD .05

Glyphosate Resistant Ryegrass 41 days after treatment with Poast + Glyphosate

Gramoxone + Princep

Horseweed

Horseweed Control http://wric.ucdavis.edu/

Herbicide 2,4-D **BROMOXYNIL** DICAMBA EPTC **FLUMIOXAZIN GLUFOSINATE GLYPHOSATE** HEXAZINONE **IMAZAPYR ISOXABEN** RIMSULFURON SIMAZINE THIAZOPYR TRICLOPYR

Trade Name	Control Level
2,4-D	С
BUCTRIL	С
BANVEL, VANQUISH	С
EPTAM, ERADICANE	С
VALOR, CHATEAU	С
FINALE, RELY	С
ROUNDUP, TOUCHDOWN	С
VELPAR, PRONONE	С
ARSENAL, STALKER	С
GALLERY	С
MATRIX	С
PRINCEP	С
VISOR	C
GARLON, REMEDY	C

EPTC
FLUMIOXAZIN
GLUFOSINATE
GLYPHOSATE

Herbicide

2,4-D

Horseweed Control http://wric.ucdavis.edu/

Trade Name 2,4-D

Control Level

С

С

C

C

EPTAM, CHATEAU FINALE, RELY ROUNDUP, TOUCHDOWN

RIMSULFURON SIMAZINE THIAZOPYR MATRIX PRINCEP VISOR C C C

Horseweed Control

Horseweed Control

Is there a possibility of resistant horseweed moving into farmland?

- ~ wind disseminated seed
- ~ these weeds like undisturbed areas
- ~ already occur in field margins and several orchards and vineyards

Resistant

Susceptible

Glyphosate Rate (ai) Mortality (%)

5 to 8 leaves	1 lb	2 lbs	4 lbs
Susceptible	100	100	100
Resistant	0	50	100

Glyphosate Rate (ai) Mortality (%)

11 to 15 leaves	1 lb	2 lbs	4 lbs
Susceptible	90	100	100
Resistant	0	20	80

Glyphosate Rate (ai) Mortality (%)

Bolting to 6 inches	1 lb	2 lbs	4 lbs
Susceptible	70	100	100
Resistant	0	0	10

Glyphosate Rate (ai) Mortality (%)

6.1 to 12 inches	1 lb	2 lbs	4 lbs
Susceptible	30	08	100
Resistant	0	0	0

The root cause of the problem?

The mode of resistance by horseweed to glyphosate appears to be through altered cellular transport and reduced translocation to the roots and other growing points. The glyphosate is not deactivated, nor the enzymatic process changed- the glyphosate stays where it is sprayed!

From Feng, etal., Weed Science 52:498-505,2004

• Early detection

• Early detection

• Rotate herbicide

• Early detection

Rotate herbicide

• Rotate Crops

Early detection

Rotate herbicide

Rotate Crop

Use Residual herbicides
How to prevent herbicide resistance

- Early detection
- Rotate herbicide
- Rotate Crops
- Use Residual herbicides

Non-chemical control techniques

How to prevent herbicide resistance

- Early detection
- Rotate herbicide
- Rotate Crops
- Use Residual herbicides
- Non-chemical control techniques
- Clean equipment

Thank you

Any Questions?

Klonsky Walnuts small acreage.ppt