WINERY &VINEYARD

frost-damaged vines

Glenn McGourty, Farm Advisor, Jim Nosera, Agricultural Technologist, Prahlada Papper, post-graduate researcher, UC Cooperative Extension, Mendocino County, CA, David Koball, Director of Vineyards for Fetzer & Bonterra Vineyards, Chad Bordman, Bonterra Vineyards Manager, Hopland, CA

here is nothing sadder to most growers than looking at their vineyard following a damaging frost in the spring, unless it is a frosted vineyard in the fall before they pick the ripening fruit.

Green grapevine tissue is damaged whenever temperatures fall below 32°F for longer than 20 minutes. In spring, emerging shoots contain developing flowers that are very prone to freezing damage.

The spring of 2008 was one of the most difficult frost seasons in many years for growers on the North Coast of California, with numerous nights of low temperatures and low dew points. Normally, **radiant freezes**, in which the air is stratified and only vineyards

[Top] Frost protection, spring 2008. Photo by Steve Sterling of Esterlina Vineyards. [Bottom] Shoots damaged by frost, spring 2008.

planted on the lowest areas of the landscape experience freezing, are common.

On the evening of April 20, a large cold air mass created **advective freezing** conditions, and many vineyards were damaged; since there was no temperature stratification, no matter where a vineyard was on the landscape, it was exposed to freezing temperatures. In this frost event, upland vineyards that normally are above cold stratified air were damaged.

Because of the low dew points, temperatures dropped rapidly, and even some vineyards that were frostprotected with sprinklers incurred injury because the systems were turned on at too low a temperature considering the low dew points. In these low-humidity conditions, evaporative cooling of the water that was applied actually cooled the vineyards to below freezing temperatures instead of protecting them.

Growers often wonder if there is an advantage to immediately pruning damaged shoots to stimulate secondary buds that might flower and set a smaller crop. Some varieties tend to do this on their own, such as Pinot Noir, Arneis, and Zinfandel. Since the potential for harvest-income is limited following a severe frost, some growers do minimal maintenance in the vineyard, primarily suckering the trunks and controlling powdery mildew. In this study, we looked at different ways of treating damaged vines to stimulate new shoot development.

Materials and Methods

Two sites were chosen: a Chardonnay vineyard (CTPS #96 on 101-14 rootstock) planted on a 7 foot x 8 foot spacing (778 vines per acre) along the Russian River in deep soil (Russian River loam) in Hopland, and a Cabernet Sauvignon (CTPS Clone 337 on 1103P rootstock) vineyard on an

GRAPEGROWING

upland site above the Ukiah Valley planted on a 5 foot x 8 foot spacing (1,089 vines per acre) in shallow soil (Redvine clay loam).

On the night of the April 20, 2008 freeze, damaged shoots in the Chardonnay vineyard had emerged about four inches in length, and shoots in the Cabernet Sauvignon vineyard had emerged about two inches in length.

Treatments were as follows:

• Control, in which the vines were left alone for dormant buds to emerge;

• Damaged shoots were removed by hand by breaking them from the spurs;*

• Damaged shoots were removed by cutting back to the base where current season tissue is connected to the previous season's woody tissue; and

• Whole spurs* were removed along with the damaged shoots to encourage basal buds to sprout in the spur position. *NOTE: A "spur" is the basal node of the previous year's woody growth containing two buds.

A randomized complete block experimental design consisted of the four treatments replicated four times. In the Chardonnay trial, each replication consisted of 10 vines (40 vines per treatment), with a total of 160 vines in the trial. In the Cabernet Sauvignon trial, each replication consisted of 6 vines (24 vines per treatment), with a total of 96 vines in each experiment.

WINERY &VINEYARD

Treatments were applied to the Chardonnay vines on May 2, 2008. Treatments were applied to the Cabernet Sauvignon vineyard on May 13, 2008.

Since there was so little fruit in both vineyards, minimal cultural practices were performed, mostly consisting of sulfur dusting to prevent powdery mildew. No canopy management practices were applied.

In the Cabernet Sauvignon trial, emerging buds were removed between the spurs on the cordons of vines receiving treatments in a time-motion study. The workers were monitored as they applied the treatments to determine how much time each treatment would take on a per-vine basis. An average time needed to apply the treatment to one vine was then multiplied by the number of vines per acre, to arrive at a per-acre time for each treatment.

At harvest, clusters were counted, cut, and weighed for all vines in each replication. One hundred berry samples were taken randomly from each replication and analyzed for Brix, titratable acidity, and pH.

The Chardonnay plot was harvested on September 30, 2008. The surrounding Chardonnay vineyard was not commer-

	Table I.	Char	donna	y: H	ARVEST	STATI	STIC	5		
Treatment	Avg. Cluster Weight (g)	HG*	Avg. Cluster Count	HG*	Avg. Yield/V (Kg)	ine HC	Yi G*	Avg. ield/Acre (tons)	9 HG*	% Change from Control
Control	42.34	а	162.00	а	0.65	а		0.56	а	_
Break Damaged Shoots	47.52	а	218.75	ab	1.04	b		0.90	b	60%
Cut Spurs	47.44	а	241.00	bc	1.14	bo	2	0.97	bc	74%
Cut Damaged Shoots	45.12	а	307.25	С	1.39	С		1.19	С	112%
	Tabl	e II.	Chard	onna	y: Chen	MISTR	Y			
Treatment	Berry Weight (g)	HG*	Br	ix H	IG*	pН	HG*	Ti (gra	itratab Acidity ms/10	le / Dcc) HG*
Control	0.98	а	20	.7	a	3.6	а		0.91	a
Break Damaged Shoots	1.03	а	21	.1	а	3.6	а		0.91	а
Cut Spurs	0.98	а	20	.7	а	3.6	а		0.91	а
Cut Damaged Shoots	1.06	а	21	.2	a	3.6	а		0.88	А
Table I	II. Chard	onna	y: Sнo	DOT E	MERGEN	ICE AI	ND RE	GROW	ГН	
Treatment	# of Spur P Per Vi	ositioı ine	ns HG*	#	of New S on Spu	Shoots irs	HG*	Ne on	w Sho Cordo	ots ons HG*
Control	13		а		5.60		а		22	а
Break Damaged Shoots	13		а		3.15		b		35	С
Cut Spurs	12		а		8.70		С		30	b
Cut Damaged Shoots	13		а		8.70		С		36	С
*Values followed by	the same l	letters	are in	homo	geneous	group	s			

cially harvested. The Cabernet Sauvignon plot was harvested on October 29, 2008, and the surrounding vines were commercially harvested.

Following leaf-fall, spur positions were counted, along with stems on the vines.

Results

In the Chardonnay trial, there were some significant differences in vine performance between treatments (at the .05 confidence interval). (Table I)

Fruit quality for the Chardonnay plot was not statistically significant between treatments. (Table II)

Shoot emergence and regrowth results from the Chardonnay plot are shown in Table III.

For the Cabernet Sauvignon plot, Table IV has the results. There were no statistical differences between treatments, but there was a definite trend toward improved yield with post-frost damage manipulations. In reviewing the statistics, the response to the treatments was quite variable, resulting in a high standard deviation for the treatments.

Fruit chemistry was not significantly different between treatments for the Cabernet Sauvignon.

Shoot emergence and regrowth from the Cabernet Sauvignon plot are shown in Table V.

Table VI shows data measured in the time study in the Cabernet Sauvignon plot.

Conclusions

Yields generally were increased by removing damaged tissue from the spurs, no matter which technique was used. In treated Chardonnay vines, the yield was significantly

Cabernet Sau manageme	Table IV ernet Sauvignon frost damage anagement trial: TIME STUDY					
Treatment	Average Time to Prune Damaged Vine (seconds)	e Total Hours es per Acre (projected)				
Control	0 (no pruning)	0				
Break Damaged Shoots	66	20				
Cut Spurs	84	25.4				
Cut Damaged Sho	ots 91	27.5				

Tab	le V: Cab	erne	t Sauv	igno	n: HAR	VEST S	TATIS	TICS	
F	wg. Cluster Weight	HG*	Avg. Cluster	HG*	Avg. Yield/V (Kg)	ine HG	A Yiel * (t	Avg. d/Acre ons) HG*	% Change from Control
Control	(6 /		10		1	110	(1	0.00	control
Control	54.5	а	19	а	1	а	(J.86 a	2001
Break Damaged Shoots	60.7	а	22	а	1.3	а	1	1.11 a	30%
Cut Spurs	60.4	а	21	а	1.2	а	1	1.03 a	20%
Cut Damaged Shoots	63.1	а	21	а	1.3	а]	l.11 a	30%
	Table VI	: Cat	ernet	Sauv	ignon:	Снем	ISTRY		
Treatment	Berry Weight (g)	HG*	Br	ix H	G*	рH	HG*	Titratab Acidit (grams/10	ole y llocc) HG*
Control	0.00		27	0		26		0.72	
Control Breads Deres and Character	0.90	a	2/	.0	d -	3.0	d	0.75	a
break Damaged Shoots	1.03	a	20	.9	a	3.0	a	0.72	а
Cut Spurs	0.98	а	27	.0	а	3.6	а	0.73	а
Cut Damaged Shoots	1.06	а	26	.7	а	3.6	а	0.74	а
Table VII: C	abernet	Sauv	ignon	: S нс	OT EME	RGENO	CE AND	O REGROW	гн
Treatment	# of Spur P Per V	ositio ine	ns HG*	#	of New Son Spu	Shoots 115	HG*	New Sho on Cord	oots ons HG*
Control	11		а		1.30		а	16	а
Break Damaged Shoots	11		а		1.70		а	18	b
Cut Spurs	11		а		1.80		а	18	b
Cut Damaged Shoots	11		а		3.40		b	19	В
*Values followed by	the same	letters	are in 1	homo	geneous	group	5		

higher than in the control, with vines responding the most when damaged tissue was cut to the base of the shoot, but retaining a small amount of the current year's tissue. In the Cabernet Sauvignon plot, there were no significant differences between treatments, but there was definitely a trend towards higher yield when damaged shoots were trimmed.

Evidently there are bud primordia or dormant buds that then grow — there were significantly higher stem numbers on the spur positions in the treatment in which we cut damaged shoots, as well.

Treatment consisting of breaking damaged new growth off by hand.

We did not differentiate in the study where the stems had actually emerged on the spur positions. Doubtless some of the shoots arose from dormant buds beneath the previous year's wood on older tissue (2+ years).

Fruit chemistry was not significantly different between the treatments. The Chardonnay sugar levels were quite low considering the time of harvest. Most of the undamaged Chardonnay blocks in the area were harvested by September 20 at much higher yields and sugars (a goal of 23.5° Brix). Even though there was some production on the vines that had been frozen, ripening was quite delayed, well below the commercial sugar content target.

The Chardonnay trial block was not commercially harvested as there was so little fruit present. By contrast, Cabernet Sauvignon grapes reached maturity in our trial, and the block was commercially harvested.

Despite the cost, most growers might do canopy manipulation after a frost specifically in order to ensure good strong wood to prune to for the following year.

Whether it makes sense to do any manipulations following freezing is questionable, and depends on the variety and need for the particular fruit.

Cut damaged tissue and one-year-old wood off of spur with shears, to stimulate basal buds.

Given the extra labor expense and the relatively low yield, most growers would not see this as a cost-effective practice. The only exception might be for a particularly valuable fruit, such as a variety needed for an estate-based wine program.

The average yield of the Chardonnay block in our study is 3.9 tons per acre in most years. The average yield of the Cabernet Sauvignon block in our study is 3.6 tons in most years. The remainder of the Cabernet

Treatment consisting of cutting damaged shoots with shears, leaving basal green tissue

GRAPEGROWING

Sauvignon block was harvested in 2008, as the fruit is quite valuable, with a yield of 1.1 tons per acre.

This research represents only one year of data. More research is needed to see if these treatments are effective in other situations and with other varieties. We hope that opportunities to continue this work rarely occur! ■

Glenn McGourty is the UCCE Winegrowing and Plant Science Advisor for Lake and Mendocino Counties. Jim Nosera is the UCCE Mendocino County Agricultural Technician. Prahlada Papper is a UCCE Post Graduate Researcher. David Koball is the Director of Vineyards for Fetzer and Bonterra Vineyards. Chad Bordman is the Vineyard Manager for Bonterra Vineyards.

Much gratitude is expressed for the support of this study by Fetzer and Bonterra Vineyards.

Ongoing Coverage of Grapegrowing:

GROWING SEASON DYNAMICS - Vine Balance impact on methoxyprazines (May/June 2010)

Determining optimal cluster exposure in your vineyard (MAY/JUNE 2010)

Variable vine spacing and micro-block irrigation yield uniform fruit quality (MARCH/APRIL 2009)

Rootstocks use and evaluation in Eastern North America (MARCH/APRIL 2009)

SUBSCRIBE TODAY!

Go to PWV website and subscribe for 7 issues for the price of 6!

	SUBSCF	to subscribe to	ER FORM VINERY VINEYARD	
PLEASE PRINT SHIP TO	D)ATE:		
Name:	С	ompany Name:		
Title:	А	ddress:		
City/State/Zip:				Primary Business: Winery Grower
Phone:	E	mail:		Winery & Grower Vyd. Mgmt.
PRICE — CHECK ONE □ US delivery — 1 year \$35, □ Canada delivery — 1 year \$	2 years \$65 \$45_2 years \$88	□ Foreign delivery-	—1 year \$55, 2 years \$10	5 Distributor Supplier (Product or Service) Home Winemaker Other
PAYMENT METHOD — CHI	ECK ONE: Check	enclosed 🗆 AME	X 🗆 Visa 🗆 Master	Card Function(s): Winemaking Pres./Owner/GM Vyd. Mgmt.
Card Number:		E	piration Date:	Cellarmaster/Proc Purch./Fin.
Customer Signature:		S	ecurity Code:	 Tasting Room Sales/Mktg.

The case for double-pruning

BY Glenn McGourty, Farm Advisor, UC Cooperative Extension Mendocino County, CA

Before the days of modern frost protection, the primary techniques to keep vineyards from freezing involved site selection (upslope, since cold air drains downward like water); clean tillage (compacted, tilled soil retains heat, and weeds can be a source of ice-nucleating bacteria, increasing frost risk); planting varieties that bud out late; and double-pruning. The four techniques were widely used in the cooler parts of the North Coast of California on old, head-pruned vines such as Zinfandel, Carignane, and Petite Sirah.

When the vines are double-pruned, the canes that are selected to be cut back to spurs are left long, and then pruned after the buds begin to open in the spring. Since the terminal buds on the tip of the shoot produce auxin (indole acetic acid), there is a sequence of bud opening from shoot-tip to the base. The basal buds are inhibited from pushing open.

Seven to ten days may pass between the opening of the terminal buds and the basal buds. Sometimes the effect continues even after the terminal bud has been removed (especially in cool weather), since auxin is systemic. What growers do is wait for bud break on the tip of the shoots, and then cut above the two buds they want to keep.

Since frost events usually happen early in the season, this may keep those two basal buds in dormancy an extra week, which can be significantly helpful in protecting the crop. On the other hand, if you are in a location that is not likely to freeze in the spring, but the season is short due to low temperatures, you could lose one week of ripening weather during the growing season, which can affect quality at harvest if rains are a potential problem. Another possible problem is that some varieties may become so inhibited by the auxin that they go into complete dormancy, and do not push a shoot following the second cut. You then end up with single canes on the spurs, and a reduced crop.

Dave Koball and Chad Bordman of Fetzer/Bonterra Vineyards experi-

mented with this technique during the 2009 growing season. They long-canepruned one block of Cabernet Sauvignon and then sequentially cut back the canes to see what kind of effect it would have to delay bud break. They found the technique effective, but the vines that were pruned the latest definitely showed a yield reduc-

tion. "There were fewer shoots and less fruit; we saw a significant yield reduction," reports Koball. Since it was an observational trial, no data were taken.

At Steele Winery (Kelseyville, CA), General Manager Steve Tylicki directs vineyard operations, including two heritage Zinfandel vineyards: the Pacini Vineyard on the Talmage Bench near Ukiah in Mendocino County, and the Catfish Vineyard on the Kelseyville Bench in Lake County.

Both vineyards produce small crops of intensely flavored fruit. Neither has a frost protection system. Tylicki uses two different approaches in pruning to address this. "Since Pacini is in an upland position, it rarely frosts there. That is one of the reasons that the vineyard was planted in 1943 by Italian immigrants. We think it is ideal when we have 'pussy willow' looking buds pushing at the tips of the canes, to finish the pruning at Catfish Vineyard. "At Catfish, we long-prune. The difficult part is timing to get everything right. You need to keep an eye on things, which can be a challenge for me, since mostly I am at the winery, and the vineyard is two miles away. We prune off everything except the canes that we want to keep for currentyear spurs.

WINERY

&VINEÝARD

"It is important to select a fairly vigorous shoot, and then cut the end-tip off just as it is starting to swell. If the shoot is too short, you do not have as good a delayed push of the basal buds. We find that if you have sap bleeding from the tip, you get more delay. If we leave a long shoot and remove the last couple of apical nodes, we obtain up to 10 days delay and frost protection.

"Finally, we wait for the pussy willow stage to do the final work and make a second cut when we think that freezing weather is over, removing the cane and retaining the two basal buds. This approach works well for that location."

Double-pruning has another benefit. UC Extension Plant Pathologist Doug Gubler and his team of researchers have been working on wood-rotting fungal disease, which causes various cankers, including *Eutypa* and *Botryosphaera*. "There is no question that late pruning is a good way to help manage the disease," explains Gubler, "especially with susceptible varieties like Cabernet Sauvignon and Sauvignon Blanc.

"Spore release from the fruiting bodies of these diseases is timed with rainfall, so the drier it is when you prune, the less likely that spores will be released to cause significant infection. We are also working on evaluating treatments to stop the fungus from infecting pruning wounds."

	SUBSCRIPTION ORDER FORM WINERY VINEYARD	
PLEASE PRINT SHIP TO	DATE:	
Name:	Company Name:	
Title:	Address:	
City/State/Zip:		Primary Business:
Phone:	Email:	Winery & Grower U Vyd. Mgmt.
PRICE — CHECK ONE		Distributor Supplier (Product)
US delivery—1 year \$35, 2	years \$65 □ Foreign delivery—1 year \$55, 2 years \$105	or Service) Home Winemake Other
PAYMENT METHOD — CHE	CK ONE: Check enclosed AMEX Visa Master Card	Function(s): Winemaking Pres./Owner/GM Vyd. Mgmt.
Card Number:	Expiration Date:	Cellarmaster/Pro
Customer Signature:	Security Code:	□ Tasting Room □ Sales/Mktg.

PLEASE SEND YOUR ORDER DORMS TO: 58-D Paul Dr, San Rafael, CA 94903 | fax: 415/492-9325 | office@pracicalwinery.com