

A Comparison of the Environmental Consequences of Power from Biomass, Coal, and Natural Gas

Margaret K. Mann
Co-author: Pamela L. Spath
National Renewable Energy Laboratory
Golden, Colorado USA

Outline of Presentation

Short discussion of life cycle assessment (LCA)

Purpose of LCAs conducted

System descriptions

- Biomass IGCC
- Average coal
- Coal/biomass cofiring
- Natural gas combined cycle

Comparative Results

- Air emissions
- Greenhouse gases
- Energy

LCA is:

- a systematic analytical method
- used to quantify the environmental benefits and drawbacks of a process
- performed on all processes, cradle-to-grave, resource extraction to final disposal
- ideal for comparing new technologies to the status quo
- helps to pinpoint areas that deserve special attention
- reveals unexpected environmental impacts (no show-stopping surprises)

Systems Examined

Biomass IGCC Indirectly-heated gasification

Dedicated hybrid poplar feedstock

Zero carbon sequestration in base case

Average coal Pulverized coal / steam cycle

Illinois #6 coal - moderate sulfur, bituminous

Surface mining

Biomass / coal 15% cofiring by heat input

cofiring Biomass residue (urban, mostly) into PC boiler

0.9 percentage point efficiency derating

Credit taken for avoided operations including

decomposition (i.e., no biomass growth)

Direct-fired biomass Biomass residue

Avoided emissions credit as with cofiring

Natural gas Combined cycle

Upstream natural gas losses = 1.4% of gross

Purpose of Studies

Biomass LCA was conducted to answer common questions:

- What are the net CO₂ emissions?
- What is the net energy production?
- Which substances are emitted at the highest rate?
- What parts of the system are responsible for the greatest impacts?
- What should biomass R&D focus on?

Coal and natural gas LCAs the foundation for quantifying the benefits of biomass power.

Direct-fired biomass system describes current biomass power industry.

Cofiring LCA examined near-term option for biomass utilization.

Each assessment conducted separately - common systems not excluded.

NREL Life Cycle & Plant CO Emissions

NREL Life Cycle & Plant Particulate Emissions

Life Cycle & Plant SO₂ Emissions

Life Cycle & Plant NOx Emissions

NREL Life Cycle & Plant NMHC Emissions

Life Cycle Air Emissions

Life Cycle GWP and Energy Balance for a Coal-fired Power System

Coal Power System
0% carbon closure

Life Cycle GWP and Energy Balance for Cofiring 15% Residue Biomass with Coal

Greenhouse gas emissions reduced by 18%

26% carbon closure

Avoided Biomass Decomposition

Avoided per 100 kg of biomass: $111.7 \text{ kg CO}_2 + 6.5 \text{ kg CH}_4$ = 248.2 kg CO₂-equiv

If 100 kg biomass were to completely decompose aerobically: 185.4 kg CO₂

Life Cycle GWP and Energy Balance for a **Direct-Fired Residue-Biomass Power System**

Current biomass power industry

Direct-Fired Biomass Residue System 134% carbon closure

Life Cycle GWP and Energy Balance for a Natural Gas Combined-Cycle System

Net greenhouse gas emissions 499.1 g CO₂-equiv/kWh of net electricity produced

Natural Gas Combined Cycle System
0% carbon closure

Life Cycle GWP and Energy Balance for Advanced IGCC Technology using Energy Crop Biomass

Advanced Biomass Power System 95% carbon closure

NR≣L Life Cycle Greenhouse Gas Emissions

Summary

Air emissions:

- Biomass: few particulates, SO₂, NOx, and methane
- Coal: upstream CO and NMHC emissions lower
- NGCC: system methane, NMHC, CO emissions high

Greenhouse Gases:

- Biomass IGCC nearly zero net GHGs
- Average coal system: ~1,000 g CO₂-equiv/kWh
- NGCC system: ~500 g CO₂-equiv/kWh
- Today's biomass systems remove GHGs from atmosphere
- Cofiring: greater reduction than rate of biomass input