

Analysis and Amelioration of Smoke Taint

Dr Kerry Wilkinson The University of Adelaide

Life Impact The University of Adelaide

Assessment of Smoke Taint

of adfi aidf

¹Kennison et al., *J. Agric. Food Chem.* **2007**, 55, 10897-10901

Anecdotal evidence from industry that smoke taint intensifies during winemaking Evolution of volatile phenols during fermentation investigated²

During fermentation of unsmoked (control) grapes:

only trace levels (< 5 μ g/L) volatile phenols detected

	concentration (µg/L)			
	guaiacol	4-methyl guaiacol	4-ethyl guaiacol	4-ethyl phenol
free run juice	n.d.	n.d.	n.d.	n.d.
after alcoholic fermentation	1	tr.	n.d.	n.d.
after malo-lactic fermentation	4	n.d.	tr.	tr.

²Kennison et al., *J. Agric. Food Chem.* **2008** (in press)

During fermentation of smoked grapes:

progressive release of volatile phenols observed

	concentration (µg/L)			
	guaiacol	4-methyl guaiacol	4-ethyl guaiacol	4-ethyl phenol
free run juice	1	tr.	n.d.	n.d.
after 1 day maceration	68	11	10	5
after 3 days maceration	168	26	8	5
after 5 days maceration	203	32	9	15
after 7 days maceration	249	42	9	17
after alcoholic fermentation	249	43	8	23
after malo-lactic fermentation	388	93	16	58

Release during primary fermentation could be attributed to extraction from skins Except, phenol levels increased during malo-lactic fermentation (i.e. after pressing)

Results suggests:1) the presence of precursor forms of volatile phenols in grapes2) conjugation of volatile smoke components following smoke exposure

Hydrolytic release of volatile phenols investigated²

mild acid hydrolysis: strong acid hydrolysis: enzyme hydrolysis:

juice pH at 100°C for 1 hour pH 1.0 at 100°C for 1 hour β-glucosidase at 30°C for 24 hours

²Kennison et al., *J. Agric. Food Chem.* **2008** (in press)

Phenols released from smoke affected juice under strong acid and enzyme hydrolysis

		concentration (µg/L)			
		guaiacol	4-methyl guaiacol	4-ethyl guaiacol	4-ethyl phenol
	free run juice	n.d.	n.d.	n.d.	n.d.
con	mild acid hydrolysate	tr.	tr.	tr.	tr.
trol	strong acid hydrolysate	tr.	tr.	tr.	tr.
	enzyme hydrolysate	tr.	tr.	tr.	tr.
	free run juice	1	tr.	n.d.	n.d.
smc	mild acid hydrolysate	tr.	tr.	tr.	tr.
ked	strong acid hydrolysate	431	162	31	48
	enzyme hydrolysate	325	82	13	27

Implications?

Guaiacol released under enzymatic (β -glucosidase) and strong acid hydrolysis conditions

Sample preparation for assessment of smoke taint is crucial...

Recommend enzyme hydrolysis of juice samples prior to analysisStrong acid conditions may not hydrolyse some precursorsBut may catalyse phenol degradative side reactions

In 2007, GWRDC funded RDI grant to evaluate amelioration of smoke taint in wine Commercial treatment process offered by Memstar

1) reverse osmosis

fractionate wine according to molecular weight 2) solid phase adsorption *remove low MW wine components*

Molecular weight cut-off ~ 200 amu

Compound	Molecular Weight
Water	18
Acetaldehyde	44
Ethanol	46
Acetic acid	60
Ethyl acetate	88
Lactic acid	90
Guaiacol	124
Malic acid	134
4-Methylguaiacol	138
Tartaric acid	150
Glucose	180
Flavonoids	>300

Treated 2007 Sauvignon Blanc from King Valley in Victoria

Samples collected from 5 treatment cycles:

whole wine

permeate

pre-activated carbon treatment post-activated carbon treatment

Wine quality parameters measured on wine and permeate samples

Treatment process did not affect wine pH, TA, sugar or alcohol contentWine phenolics decreasedextraction of phenols by activated carbon?

sample	pН	TA (g/L)	glucose (g/L)	ethanol (%)	phenolics (au)	brown pigments (au)
untreated wine	3.4	5.7	0.2	12.6	6.13	0.102
permeate (pre-AC)	3.5	2.4	0.0		-2.48	-0.006
permeate (post-AC)	3.5	2.4	0.0		-3.16	-0.012
treated wine	3.5	5.9	0.2	12.7	5.45	0.099

Volatile phenol concentrations measured in wine and permeate samples

Phenol levels decreased with treatment

extraction of phenols by activated carbon

Low phenol levels – difficult to detect smoke taint – no useful sensory data Experiment repeated using a Pinot Noir with evident smoke taint

Treated 2007 Pinot Noir from King Valley in Victoria

Samples collected before and after treatment process:

untreated wine reverse osmosis treated wine

Again, treatment process did not affect wine quality parameters

sample	рН	TA (g/L)	alcohol (% v/v)	colour density	colour hue	phenolics (au)	sugar (g/L)
untreated wine	3.4	9.0	14.1	5.2	0.8	39	0.8
RO treated wine	3.4	7.8	13.7	5.0	0.8	35	0.6

Smoke derived volatile phenols decreased following treatment

sample –	concentration (µg/L)				
	guaiacol	4-methylguaiacol			
untreated wine	12	3			
RO treated wine	5	2			

Treatment process had significant effect on wine sensory properties Difference test: perceivable difference between untreated wine and RO treated wines Consumer preference: improved consumer acceptability following RO treatment

Adsorption of 'desirable' wine components now being investigated

Acknowledgements

FERMENTATION EXPERIMENTS Kristen Kennison (DAFWA, Curtin), Assoc Prof Mark Gibberd (Curtin)

LC-MS/MS and GC-MS ANALYSIS Dr Yoji Hayasaka, Dr Alan Pollnitz, Gayle Baldock (AWRI)

AMELIORATION PROJECT Kathy Quinn (Curtin) and David Wollan (Memstar)

FUNDING Grape and Wine Research and Development Corporation

Australian Government

Grape and Wine Research and Development Corporation

