Walnut Scale & Walnut Husk Fly

Emily J. Symmes
Area Integrated Pest Management Advisor, Sacramento Valley
University of California Cooperative Extension & Statewide IPM Program
ejsymmes@ucanr.edu
530-538-7201
@SacValleyIPM

Sac-Solano-Yolo Walnut Day
Feb 23rd, 2016
Life Cycle and Management of Walnut Scale

Emily J. Symmes
Area Integrated Pest Management Advisor, Sacramento Valley
University of California Cooperative Extension & Statewide IPM Program
ejsymmes@ucanr.edu
530-538-7201
@SacValleyIPM
Walnut Scale Basic Biology

- Eggs (under female cover)
- Adult males
- Nymphs (immobile)
- Crawlers (mobile)
Impact of Walnut Scale

- Suck plant juices
- Infested trees can appear water stressed
- Heavy populations may cause dieback of inside fruiting wood on lateral bearing cultivars, cracking of bark, reduced terminal growth & vigor leading to smaller nuts & poor kernel quality
- Economic damage rare unless populations very heavy, but…
- ***Feeding can provide entry point for pathogens
 - Ex: Bot-walnut scale association
Impact of Walnut Scale

Association with *Botryosphaeria*
Walnut Scale Seasonal Cycle*

- Two generations/year
- Overwinter as 2nd instar nymphs
- Resume development late winter – spring
- 1st generation crawler emergence late April – early May
- 2nd generation crawlers late summer – fall

*Phenology model pieced together from limited studies and are approximate timings only.
2015 Phenology Study

<table>
<thead>
<tr>
<th>Site</th>
<th>Cultivar</th>
<th>Number of replicate tapes (total trees)</th>
<th>Parasitoid activity detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tehama 1</td>
<td>Howard</td>
<td>4 (4)</td>
<td>Yes</td>
</tr>
<tr>
<td>Butte 3</td>
<td>Chandler</td>
<td>10 (5)</td>
<td>Yes</td>
</tr>
<tr>
<td>Butte 4</td>
<td>Howard</td>
<td>10 (5)</td>
<td>Yes</td>
</tr>
<tr>
<td>Yuba 5</td>
<td>Vina</td>
<td>12 (6)</td>
<td>Yes</td>
</tr>
<tr>
<td>Yuba 6</td>
<td>Chandler</td>
<td>18 (6)</td>
<td>Yes</td>
</tr>
<tr>
<td>Solano 7</td>
<td>Chandler</td>
<td>12 (9)</td>
<td>Yes</td>
</tr>
<tr>
<td>Contra Costa 10</td>
<td>Chandler</td>
<td>12 (6)</td>
<td>Yes</td>
</tr>
<tr>
<td>Contra Costa 11</td>
<td>Chandler</td>
<td>12 (6)</td>
<td>Yes</td>
</tr>
<tr>
<td>Tulare 12</td>
<td>Chandler</td>
<td>10 (5)</td>
<td>Yes</td>
</tr>
</tbody>
</table>
2015 Phenology Study – Crawler Monitoring

Appr. 100X magnification

© E.J. Symmes 2016
2015 Phenology Study – General Conclusions

- 2 generations/year in all locations
- Extended crawler periods
 - Appears to be more overlap between generations than previously reported
Biological Control: Walnut Scale Parasitoids
Twicestabbed lady beetle adult and larva

Cybocephalus californicus beetle
Walnut Scale Monitoring: Dormant Period

- Examine scaffolds, limbs, branches, and prunings for scales & evidence of parasitism

- Historical treatment thresholds: pests + parasitization
 - If high degree of parasitization observed, consider delaying treatments until after crawler emergence

- Current thresholds – must consider Botryosphaeria

If treatments were applied previous season, confirm whether scales are still alive
Walnut Scale Monitoring: Dormant Period

Live walnut scale nymphs (above)
Live walnut scale adult females (below)

Dead adult female walnut scale
Walnut Scale Monitoring: Crawlers

- Place tapes by mid-April
- Monitor weekly
- Aid in treatment timing
- Confirm live populations
- Assess population densities
Walnut Scale Monitoring: Dormant Period

Appr. 100X magnification

Often high densities at margins of tape (low magnification)

Photos: E. J. Symmes (L) and D. M. Lightle (R)
Walnut Scale Management Options & Timing

• Pre-Bot: Biological control provided adequate suppression of low to moderate populations

• Bot-era: Insecticide treatment timings
 • Delayed-dormant (March)
 • Crawler stage
2014-2015 Insecticide Evaluations

- ‘Vina’ walnut orchard, Yuba County, CA

- Treatment timings
 - Post-delayed dormant or first generation crawler

- Each tree monitored for crawlers
 - 25-March-2014 to 2-June-2014

- During dormant season, twigs examined for number of live scales
 - 21-January-2015

- Follow-up crawler evaluations
 - 4-June-2015 and 11-June-2015
2014-2015 Insecticide Evaluations

<table>
<thead>
<tr>
<th>Treatment (AI)*</th>
<th>Rate form/acre</th>
<th>IRAC # (Mode of Action)</th>
<th>Application Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated Check</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Seize 35WP (pyriproxyfen)</td>
<td>5.0 oz.</td>
<td>7C (IGR – juvenile hormone mimic)</td>
<td>DD</td>
</tr>
<tr>
<td>Centaur 70WDG (buprofezin)</td>
<td>46.0 oz.</td>
<td>16 (IGR – chitin synthesis inhibitor)</td>
<td>DD</td>
</tr>
<tr>
<td>Sequoia 2SC (sulfoxaflor)</td>
<td>5.75 fl. oz.</td>
<td>4C (sulfoximine – nerve toxin)</td>
<td>C</td>
</tr>
<tr>
<td>Assail 30SG (acetamiprid)</td>
<td>5.3 oz.</td>
<td>4A (neonicotinoid – nerve toxin)</td>
<td>C</td>
</tr>
<tr>
<td>Assail 30SG (acetamiprid)</td>
<td>9.6 oz.</td>
<td>4A (neonicotinoid – nerve toxin)</td>
<td>C</td>
</tr>
<tr>
<td>Movento 2SC (spirotetramat)</td>
<td>9.0 fl. oz.</td>
<td>23 (IGR – lipid biosynthesis inhibitor)</td>
<td>C</td>
</tr>
<tr>
<td>Brigadier 2EC (bifenthrin + imidacloprid)</td>
<td>12.8 fl. oz.</td>
<td>3 and 4A (pyrethroid + neonicotinoid – nerve toxins)</td>
<td>C</td>
</tr>
<tr>
<td>Centaur 70WDG (buprofezin)</td>
<td>46 oz.</td>
<td>16 (IGR – chitin synthesis inhibitor)</td>
<td>C</td>
</tr>
</tbody>
</table>

*All treatments included 0.25% v/v Latron B-1956

DD = (post) delayed-dormant (8-April-2014)
C = crawler (6-May-2014)
2014-2015 Insecticide Evaluations

2014-2015
Total crawlers/cm/day

<table>
<thead>
<tr>
<th>Product</th>
<th>Treatment Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated check</td>
<td>Delayed dormant</td>
</tr>
<tr>
<td>Seize 35WP</td>
<td></td>
</tr>
<tr>
<td>Centaur 70WDG</td>
<td></td>
</tr>
<tr>
<td>Sequoia 2SC</td>
<td>Crawler treatments</td>
</tr>
<tr>
<td>Assail 30SG, low rate</td>
<td></td>
</tr>
<tr>
<td>Movento 2SC</td>
<td></td>
</tr>
<tr>
<td>Brigadier 2EC</td>
<td></td>
</tr>
<tr>
<td>Centaur 70WDG</td>
<td></td>
</tr>
<tr>
<td>Assail 30SG, high rate</td>
<td></td>
</tr>
</tbody>
</table>

© E.J. Symmes 2016
2014-2015 Insecticide Evaluations

Live scale/cm – January 2015

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Crawler treatments</th>
<th>Delayed dormant treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seize 35WP</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Centaur 70WDG</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Sequoia 2SC</td>
<td>bc</td>
<td></td>
</tr>
<tr>
<td>Assail 30SG, low rate</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Movento 2SC</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Brigadier 2EC</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Centaur 70WDG</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Assail 30SG, high rate</td>
<td>bc</td>
<td></td>
</tr>
</tbody>
</table>

© E.J. Symmes 2016
2014-2015 Insecticide Evaluations

2014-2015
Crawlers/cm/day – June 2015

- Untreated check: a
- Seize 35WP: c
- Centaur 70WDG: bc
- Sequoia 2SC: ab
- Assail 30SG, low rate: bc
- Movento 2SC: bc
- Brigadier 2EC: bc
- Centaur 70WDG: c
- Assail 30SG, high rate: bc

© E.J. Symmes 2016
2014-2015 Insecticide Evaluations

- General Conclusions

- Centaur 70WDG (delayed dormant) provided best control of within-generation crawlers

- Centaur 70WDG (delayed dormant & crawler), Seize 35WP (delayed dormant), Movento 2SC (crawler), and Brigadier 2EC (crawler) provided best control based on OW populations

- All treatments except Sequoia 2SC provided significant population suppression the following spring compared to UTC
2015-2016 Insecticide Evaluations

- ‘Chandler’ walnut orchard, Yuba County, CA

- Treatment timings
 - Delayed dormant and/or first generation crawlers

- Each tree monitored for crawlers
 - 14-April-2015 to 25-June-2015

- During dormant season, twigs examined for number of live scales
 - January 2016
2015-2016 Insecticide Evaluations

<table>
<thead>
<tr>
<th>Treatment (AI)</th>
<th>Rate form/acre</th>
<th>Mode of Action (IRAC #)</th>
<th>Application Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated Check</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Seize 35WPb (pyriproxyfen)</td>
<td>5.0 oz.</td>
<td>7C (IGR – juvenile hormone mimic)</td>
<td>DD</td>
</tr>
<tr>
<td>Centaur 70WDGb (buprofezin)</td>
<td>46.0 oz.</td>
<td>16 (IGR – chitin synthesis inhibitor)</td>
<td>DD</td>
</tr>
<tr>
<td>Centaur 70WDGc (buprofezin)</td>
<td>46.0 oz.</td>
<td>16 (IGR – chitin synthesis inhibitor)</td>
<td>DD</td>
</tr>
<tr>
<td>Centaur 70WDGcd (buprofezin)</td>
<td>46.0 oz.</td>
<td>16 (IGR – chitin synthesis inhibitor)</td>
<td>DD</td>
</tr>
<tr>
<td>Sivanto 1.67SLa (flupyradifurone)</td>
<td>14.0 fl. oz.</td>
<td>4D (butenolide – nerve toxin)</td>
<td>C</td>
</tr>
<tr>
<td>Sequoia 2SCa</td>
<td>4.5 fl. oz.</td>
<td>4C (sulfoximine – nerve toxin)</td>
<td>C</td>
</tr>
<tr>
<td>Sequoia 2SCa</td>
<td>5.75 fl. oz.</td>
<td>4C (sulfoximine – nerve toxin)</td>
<td>C</td>
</tr>
<tr>
<td>Movento 2SCa (spirotetramat)</td>
<td>9.0 fl. oz.</td>
<td>23 (IGR – lipid biosynthesis inhibitor)</td>
<td>C</td>
</tr>
<tr>
<td>Centaur 70WDGa (buprofezin)</td>
<td>46 oz.</td>
<td>16 (IGR – chitin synthesis inhibitor)</td>
<td>C</td>
</tr>
<tr>
<td>Sivanto 1.67 SLb (flupyradifurone)</td>
<td>14.0 fl. oz.</td>
<td>4D (butenolide – nerve toxin)</td>
<td>DD</td>
</tr>
<tr>
<td>Movento 2SCa (spirotetramat)</td>
<td>9.0 fl. oz.</td>
<td>23 (IGR – lipid biosynthesis inhibitor)</td>
<td>C</td>
</tr>
<tr>
<td>Movento 2CS (spirotetramat) + Assail 30SGa (acetamiprid)</td>
<td>9.0 fl. oz. + 8.0 fl. oz.</td>
<td>23 (IGR – lipid biosynthesis inhibitor) 4A (neonicotinoid – nerve toxin)</td>
<td>C</td>
</tr>
</tbody>
</table>

* Treatments included 0.0625% v/v Dyne-Amic
* Treatments included 0.25% v/v Latron B-1956
* Treatments included 0.5% v/v OR 009
* Treatments included 0.0125% v/v Latron B-1956

DD = delayed-dormant (12-March-2015)
C = crawler (12-May-2015)
2015-2016 Insecticide Evaluations

2015-2016
Total crawlers/cm/day

Untreated Check

Seize 35WP

cde

Centaur 70WDG (OR 009)
de

Centaur 70WDG (Latron B-1956)
de

Centaur 70WDG (OR 009 + Latron B-1956)
e

Sivanto 1.67SL

cde

Sequoia 2SC, low rate
ab

Sequoia 2SC, high rate
bcd

Movento 2SC
cde

Centaur 70WDG
cde

Sivanto 1.67SL (dormant) + Movento 2SC (crawler)
bc

Movento 2SC (crawler) + Assail 30SG (crawler)
cde

Delayed dormant treatments

Crawler treatments

Combination treatments

© E.J. Symmes 2016
2015-2016 Insecticide Evaluations

2015-2016
Live scale/cm – January 2016

Untreated Check

Seize 35WP

Centaur 70WDG (OR 009)

Centaur 70WDG (Latron B-1956)

Centaur 70WDG (OR 009 + Latron B-1956)

Sivanto 1.67SL

Sequoia 2SC, low rate

Sequoia 2SC, high rate

Movento 2SC

Centaur 70WDG

Sivanto 1.67SL (dormant) + Movento 2SC (crawler)

Movento 2SC (crawler) + Assail 30SG (crawler)

Delayed dormant treatments

Crawler treatments

Combination treatments

© E.J. Symmes 2016
General Conclusions

- Spring 2015 evaluations showed continued population suppression
 - Possible every 2-3 year treatment for scale
- Spring 2016 evaluations...
- Treatment thresholds based on Bot pressure?

2014-2016 Insecticide Evaluations

<table>
<thead>
<tr>
<th>Generally performed better than untreated:</th>
<th>Mixed results (relative to controls):</th>
<th>Did not perform well (relative to controls):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seize DD</td>
<td>Assail C</td>
<td>Sivanto C</td>
</tr>
<tr>
<td>Centaur DD</td>
<td>Brigadier C</td>
<td>Sequoia* C</td>
</tr>
<tr>
<td>Centaur C</td>
<td>Movento C</td>
<td></td>
</tr>
</tbody>
</table>
Walnut Husk Fly Management Update

Emily J. Symmes
Area Integrated Pest Management Advisor, Sacramento Valley
University of California Cooperative Extension & Statewide IPM Program
ejsymmes@ucanr.edu
530-538-7201
@SacValleyIPM
Insecticide Efficacy Trials – Van Steenwyk & Coates

• ‘Hartley’ orchard (Hollister, CA)

• High WHF populations

• Treatments applied with hand-gun orchard sprayer
 - Operated at 250 psi, final spray volume of 300 gal/ac

• 3 to 4 applications/year
 - Mid-late July, mid-August, late-August/early-September

• Treatments replicated 4 times (single tree replicates)
 - Included NuLure & Dyne-Amic or Latron-B

• Evaluated 125 nuts/rep before commercial harvest (mid-
<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage 360</td>
<td>2.8 fl.oz/acre betacyfluthrin (3A) and imidacloprid (4A)</td>
</tr>
<tr>
<td>Assail</td>
<td>6.0 oz/acre acetamiprid (4A)</td>
</tr>
<tr>
<td>Danitol + Belay</td>
<td>21.3 fl.oz + 6 fl.oz/acre fenpropadrin (3A) + clothianidin (4A)</td>
</tr>
</tbody>
</table>
| **Stallion + Brigadier** | 11.8 fl.oz + 12.8 fl.oz/acre
 bifentrin (3A) and imidaclorid (4A) + zeta-cypermethrin (3A) and chlorpyrifos (1B) |
| **Baythroid** | 2.8 fl.oz/acre betacyfluthrin (3A) |
Good Efficacy
75-95% Control

<table>
<thead>
<tr>
<th>Product</th>
<th>Concentration</th>
<th>Active Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temitry</td>
<td>14.0 oz/acre</td>
<td>malathion (1B) and gamma-cyhalothrin (3A)</td>
</tr>
<tr>
<td>Danitol</td>
<td>21.3 fl.oz/acre</td>
<td>fenpropathrin (3A)</td>
</tr>
<tr>
<td>Belay</td>
<td>6.0 fl.oz/acre</td>
<td>clothianidin (4A)</td>
</tr>
<tr>
<td>Assail</td>
<td>4.0 oz/acre</td>
<td>acetamiprid (4A)</td>
</tr>
<tr>
<td>Athena + Brigadier</td>
<td>20.0 fl.oz + 12.8 fl.oz/acre</td>
<td>bifenthrin (3A) and avermectin (6) + zeta-cypermethrin (3A) and chlorpyrifos (1B)</td>
</tr>
<tr>
<td>Brigade + Brigadier</td>
<td>16.0 oz + 12.8 fl.oz/acre</td>
<td>bifenthrin (3A) + zeta-cypermethrin (3A) and chlorpyrifos (1B)</td>
</tr>
<tr>
<td>Provado</td>
<td>7.0 fl.oz/acre</td>
<td>imidacloprid (4A)</td>
</tr>
</tbody>
</table>

© E.J. Symmes 2016
<table>
<thead>
<tr>
<th>Moderate Efficacy</th>
<th>50-75% Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athena</td>
<td>20.0 fl.oz/acre</td>
</tr>
<tr>
<td></td>
<td>bifenthrin (3A)</td>
</tr>
<tr>
<td>Intrepid Edge</td>
<td>12.75 fl.oz/acre</td>
</tr>
<tr>
<td></td>
<td>spinetoram (5) and methoxyfenozide (18)</td>
</tr>
<tr>
<td>Warrior</td>
<td>2.56 fl.oz/acre</td>
</tr>
<tr>
<td></td>
<td>lambda-cyhalothrin (3A)</td>
</tr>
<tr>
<td>Belay</td>
<td>3.0 fl.oz/acre</td>
</tr>
<tr>
<td></td>
<td>clothianidin (4A)</td>
</tr>
<tr>
<td>Delegate</td>
<td>3.2 oz/acre</td>
</tr>
<tr>
<td></td>
<td>spinetoram (5)</td>
</tr>
<tr>
<td>Little Efficacy 20-50% Control</td>
<td>No Efficacy 0-20% Control</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Cyclaniliprole (28) 16.4 fl.oz/acre</td>
<td>Malathion (1B) 64.0 fl.oz/acre</td>
</tr>
<tr>
<td>Exirel 20.5 fl.oz/acre cyantraniliprole (28)</td>
<td>Bexar 27.0 fl.oz/acre tolfenpyrad (21A)</td>
</tr>
<tr>
<td></td>
<td>Altacor 4.0 oz/acre chlorantraniliprole (28)</td>
</tr>
</tbody>
</table>

© E.J. Symmes 2016
Nuts exposed to WHF – ave. 3 stings/nut

Nuts dipped in max. label rate/100 gal., air dried, visually examined for egg hatch/larval feeding 3, 7, 10 days after treatment
- Immediately after oviposition
- 7-10 days later (after larval feeding observed)

3 treatments (neonicotinoids, 3A) + UTC, 20 replicates
- Assail 30SG (2.4 fl. oz) – acetamiprid
- Admire Pro (8.0 oz) – imidacloprid
- Belay 2.13SC (6.0 fl. oz) – clothianidin
- All with 0.125% v/v MSO (methylated seed oil)
• General conclusions

• All tested materials showed ovicidal activity
 - Very high exposure with dip method
 - Need to follow-up with exposure rates typical of field application methods

• Larvicidal activity not observed
 - Suggests that, once hatched, larvae are highly resistant to surface application of these materials

• Control at various life stages enables more leeway in spray timing
Walnut Husk Fly
Management Update

Emily J. Symmes
Area Integrated Pest Management Advisor, Sacramento Valley
University of California Cooperative Extension & Statewide IPM Program
ejsymmes@ucanr.edu
530-538-7201
@SacValleyIPM